If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14v^2+96v-128=0
a = 14; b = 96; c = -128;
Δ = b2-4ac
Δ = 962-4·14·(-128)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-128}{2*14}=\frac{-224}{28} =-8 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+128}{2*14}=\frac{32}{28} =1+1/7 $
| 16.2=6u-22.2 | | 6m-11=2+9m-9 | | x3=250. | | 9-(c)=-13 | | 3−8z=-1−7z | | 7+y/20.48=15 | | u=-u+10 | | 4K+9=2k-1 | | 1/2=x/38.6 | | 7c=9c+10 | | 103-x=194 | | 4(2x-3)=2×3x+1 | | 59-u=250 | | -5−9k=-10k | | 6(-2-1)=-13g+2) | | 1.3-x=0.4 | | 8+7t=5t | | 5^x-1/5^x=6 | | 6(2g-1)=-13g+2) | | -8+5f=f | | (5^x)-(5^-x)-6=0 | | 3n^-n-7=0 | | 5^x-5^-x=6 | | 3x+14=60 | | 185m=-7 | | 512(x)=512 | | 4x+9=2(2x | | 1/2x+x=21 | | 4x+2-5=7x+1 | | 9/3-1=3+11/x-1 | | b^2+8b+9=6 | | 3x−6/3=x+6/2 |